
Path Constraints from a Modal Logic Point of
View

Natasha Alechina ∗ Stéphane Demri † Maarten de Rijke ‡

Abstract
We analyze several classes of path constraints for semistructured data

in a unified framework and prove some decidability and complexity results
for these constraints by embedding them in Propositional Dynamic Logic.
While some of our decidability results were known before, we believe that
our improved complexity bounds are new. Our proofs, based on techniques
from modal logic, shed additional light on the reasons for previously known
decidability and complexity results.

1 Introduction

In recent years, a lot of interesting work has been done to extend database
techniques to semistructured collections of data, in particular the World Wide
Web or fragments of it; an overview of this work can be found in [1]. It is
generally agreed that the appropriate data model for semistructured data is
an edge-labeled graph. More specifically, the web can be viewed as a set of
objects linked by labeled edges; an object represents a page, and the labeled
edges represent hypertext links.

Query languages proposed for semistructured data and querying the web,
such as WebSQL, Lorel, and UnQL are similar in spirit if not in syntax, and in-
clude a form of recursion (regular expressions). Making effective use of whatever
information is available about the format of data is obviously a very important
issue. In the context of the web, it is often useful to know that everything
accessible by a given sequence of links is cached, or available locally; or that
the site reachable by a given sequence of links is mirrored elsewhere, etc. To
express such information, one can use so-called path constraints, that is: state-
ments about paths in the graph. It is reasonable to expect that the language
of constraints forms a well-behaved (preferably decidable) sublanguage of the
query language.
∗School of Computer Science & IT, University of Nottingham, Nottingham, NG8 1BB,

England. E-mail: n.alechina@cs.nott.ac.uk
†Laboratoire Spécification et Vérification, ENS de Cachan, 61 Avenue du Président Wilson,

94235 Cachan Cedex, France. E-mail: demri@lsv.ens-cachan.fr
‡ILLC, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The

Netherlands. E-mail: mdr@wins.uva.nl

1



We build on results in [2, 9], and embed several classes of path constraints
that have been considered in the literature into a well-known modal logic. This
embedding establishes a number of things; it shows how various constraints
relate to each other, it sheds light on the known decidability results, and it
gives rise to new ones.

The paper is organized as follows. Section 2 provides background information
on data models and query languages. Section 3 introduces several kinds of path
constraints, and in Section 4 we introduce logical formalisms to capture such
constraints. In Section 5 we state our complexity and decidability results. We
conclude in Section 6.

2 Background

Semistructured data is often represented as an edge-labeled graph. In particular,
the World Wide Web can be modeled as a graph where the vertices are uniquely
identified by URLs and the labels are hypertext links between them [1]. An
important special class of graphs are deterministic graphs. A graph is called
deterministic if for every node u and label a there is at most one node v such that
u

a−→ v holds. In the case of the web (unlike the case of most object-oriented
databases) it is reasonable to expect a graph to be deterministic.

In this paper, we will restrict attention to rooted connected graphs: that is,
one of the nodes in the graph is designated as the root and every other node is
accessible from the root by a directed path of edges. Intuitively, this is because
we consider the web from the point of view of browsing, i.e., only the sites
accessible from the current site (the root) really matter.

Languages for querying semistructured data use so-called path queries. These
have emerged as an important class of browsing-style queries, and in their sim-
plest version they are of the form ‘find all objects reachable by paths whose edge
labels form a regular expression over some given alphabet of labels.’

Definition 1 Let L be a countable set of edge labels. A label l ∈ L, an empty
path ε and a wildcard # are path expressions. If p1 and p2 are path expressions,
then so are p1 ; p2 (sequential composition), p1 + p2 (union), and p∗ (finite
iteration). A simple path is a path expression with no occurrence of #, ∗ and
+.

3 Path Constraints

In the absence of information about the format of data, evaluating queries with
regular expressions can be very inefficient. A natural way to express useful
information about the data represented as a graph is to impose constraints on
possible paths in the graph, such as ‘all objects reachable by a path p are also
reachable by a path q,’ where p and q are sequences of labels, possibly involving
regular expressions. Examples of constraints which may be useful for query
optimization in the context of the web are constraints saying that everything

2



x

p

q

yR
�

x

p

q

yR
I

x -
r

y

p

q

zR
�

(a) Inclusion constraint (b) Backward constraint (c) Lollipop constraint

Figure 1: Constraints.

accessible by such-and-such sequence of labels is also accessible locally; that the
answer to such-and-such query is cached; that such-and-such site is mirrored
elsewhere, and so on. All these examples can be expressed by means of path
inclusion constraints as defined in [2] (see below).

The motivation of the work in [9] is more database-related. One important
difference between the constraints considered in [2] and those studied in [9] is
that the former correspond to unary properties and are evaluated relative to a
node; the latter are closed sentences and can be evaluated anywhere and don’t
have to mention the root. Another difference is that the former can contain
regular expressions, while the latter are strictly first-order definable.

Definition 2 Let p and q be two path expressions. A path inclusion constraint
is a statement of the form p ⊆f q. A path inclusion constraint p ⊆f q is
true at a node x if every node y reachable from x by a path whose labels form a
word described by p (i.e., a p-path), is reachable from x by a path whose labels
form a word described by q (i.e., q-path). See Figure 1 (a).

The path inclusion constraints defined above are sometimes referred to as for-
ward constraints. In [9], backward constraints are introduced. We generalize
their definition for a language containing regular expressions.

Definition 3 Let p and q be two path expressions. A backward path constraint
p ⊆b q is true at a node x if for every y reachable from x by a p-path, it is
possible to come back to x by a q-path. See Figure 1 (b).

Notice that a backward constraint can be rewritten as an inclusion constraint,
and vice versa, by rewriting the regular expressions involved in the presence of
the converse operator.

A path constraint (notation: p ⊆ q) is either a path inclusion constraint or
a backward constraint. The next class of constraints is a generalization of path
constraints as defined in [9] for a language containing regular expressions:

Definition 4 Let p and q be two path expressions. A lollipop path constraint is
an expression of the form r ; p ⊆ q. A lollipop path constraint r ; p ⊆ q
is true at a node x if at every node y reachable from x by an r-path, the path
constraint p ⊆ q holds. See Figure 1 (c).

Obviously, a path inclusion constraint p ⊆f q is a lollilop path constraint
r ; p ⊆f q with r = ε.

3



4 Reasoning about Path Constraints

Now that we have formulated path constraints, we take a closer look at reasoning
tasks involving them. These include checking whether a certain constraint holds
or whether a certain set of constraints is consistent or implies another constraint.
To determine the computational costs of these tasks, we recast them as model
checking, satisfiability checking, and implication checking tasks in some logic.
Which logic (or logics) should we use? Many formalisms have been proposed
for reasoning about graphs. As we will see below, many decidable classes of
constraints are definable in suitable modal logics, while constraints that lack a
modal flavor (such as the ones studied in [9]) are generally undecidable. Rather
than the presence or absence of regular expressions or even the need for two vs.
three variables to express a constraint, the ‘modal flavor’ of constraints seems to
be important — by this we mean the fact that modal formulas can only express
local properties and the fact that the quantification implicit in modal formulas
is ‘guarded’ [3].

Thus, we translate constraints into formulas of a flavor of Propositional
Dynamic Logic (PDL, [17]) and reformulate reasoning tasks for constraints as
reasoning tasks within this flavor of PDL. The language of PDL has two kinds of
primitive symbols: propositional symbols and atomic transitions. Propositional
symbols stand for properties that are true or false of a node in a graph; we
only need three propositional symbols: > (tautology), ⊥ (falsum), and root
(to denote the root of the graph). Atomic transitions are used to label edges;
we include a distinguished label id to denote the diagonal relation. Compound
transition terms correspond to path expressions and are built from atomic ones
using ;, + and ∗.

In addition to these traditional ingredients of PDL, we add a wildcard #
and a converse operator (̆·) (also written as (·)−1): # is a transition term, and
if t is a transition term, then so is t̆ (the labels of t in reverse order). PDL
with converse is called converse PDL (CPDL). We obtain CPDL with nominals
by extending CPDL with special propositional symbols, called nominals, that
are true of at most one node in a graph; our symbol root is an example of a
nominal.

Definition 5 (PDLpath) We now define the legal formulas of PDLpath. Rela-
tional terms are typically denoted by t, atomic terms by a, and formulas are
typically denoted by φ:

t ::= id | a | # | t+ t | t ; t | t∗ | t̆
φ ::= > | ⊥ | root | ¬φ | φ ∧ φ | 〈t〉φ | [t]φ.

A formula 〈t〉φ is read as ‘after some transition t, φ holds,’ or, more precisely, as
‘there is a sequence of labels which forms a word in a regular language defined
by t and it leads to a node where φ holds.’ Dually, [t]φ is definable as ¬〈t〉¬φ
and means ‘after every transition t, φ holds,’ that is: ‘if labels of a path form a
word in t, then at the end of the path φ holds’.

4



To give an example, 〈a∗〉¬〈b〉> means that after 0 or finitely many a links one
can reach a node which has no outgoing links labeled b.

Definition 6 (Semantics) PDLpath is interpreted on structures of the form
G = (V, rt, {Ra : a ∈ L}), where rt ∈ V is the root and, for every label a, Ra is a
binary relation on V . These relations represent the edges of the semistructured
data viewed as an edge-labeled graph. Sometimes, we restrict ourselves to so-
called deterministic structures; these are structures (V, rt, {Ra : a ∈ L}) that
satisfy the following condition, for all states u, v, w ∈ V and edge labels a ∈ L:
if uRav ∧ uRaw then v = w.

We now define truth of a formula φ at a node w in a structure G (notation:
G,w |= φ). For atomic propositional symbols, > is true at all nodes, ⊥ is false
at all nodes, and root is true only at the root of the graph. Further, ¬φ is true
if φ is false, and φ∧ψ is true if both φ and ψ are true. For modalities, we need
first to define transition relations tr(t) on V ×V corresponding to the transition
terms t:

tr(a) = Ra for a ∈ L

tr(t∗) is the reflexive transitive closure of tr(t)

tr(#) =
⋃
a∈LRa

tr(t̆) = {〈u, v〉 : 〈v, u〉 ∈ tr(t)}

tr(id) = {〈u, u〉 : u ∈ V }

tr(t1 ; t2) = {〈u, v〉 : ∃z(tr(t1)(u, z)∧ tr(t2)(z, v))}

tr(t1 + t2) = tr(t1) ∪ tr(t2)

We say that v is accessible from u by a transition t if 〈u, v〉 ∈ tr(t). Then,
for modal formulas, 〈t〉φ is true at a node u if there exists a node v accessible
from u by t such that φ is true at v. Dually, [t]φ is true at u if for every v
accessible from u by t, φ is true.

A PDLpath formula φ is true on a structure (edge-labeled rooted graph) G
if it is true at the root of G. A lollipop path constraint r ; p ⊆ q is true on
a structure G (in symbols G |= r ; p ⊆ q) iff r ; p ⊆ q is true at the
root of G.

Definition 7 (Reasoning Tasks) The model checking problem is to decide,
given a structure G and a formula φ, whether φ is true on G. The satisfiability
problem for PDLpath is to determine, given a PDLpath formula φ, whether there
is a structure G such that φ is true at the root of G. The implication problem
for path inclusion constraints is to determine, given constraints φ1, . . . , φn and
φ, whether it the case that for all structure G, G |= φ1, . . . , G |= φn imply
G |= φ?

The implication problem for other classes of constraints can be defined accord-
ingly. Below we reduce the implication problem to the satisfiability problem;
see Theorem 11.

5



5 Complexity and Decidability Results

5.1 The Model Checking Problem

Given a formula φ, define |φ|, the length of φ, as the number of symbols in φ.
Given a structure G = (V, rt, {Ra : a ∈ L}) with a finite domain V and a finite
set of atomic edge labels L, define ||G||, the size of G, to be the sum of the
number of states in V and the number of pairs in

⋃
{Ra : a ∈ L}.

The model checking problem for PDLpath is no more expensive than for
PDL:

Theorem 8 There is an algorithm that, given a finite (deterministic or non-
deterministic) graph G, a node w of G, and a PDLpath formula φ, determines,
in time O(||G|| × |φ|) whether G,w |= φ.

Proof. There is a simple linear reduction of the model checking problem for
PDLpath to the model checking problem for PDL. The latter problem is O(||G||×
|φ|). This follows from the fact that model-checking for the alternation-free
modal µ-calculus is in linear-time (see e.g. [11]).

The linear time reduction works as follows. First, given G, we construct a
new graph G′. G′ has the same vertices and root, and contains all the edges
which G does plus, for every edge u a−→ v in G we add two more edges to G′:
u

#−→ v and v
ă−→ u. Construction of G′ is obviously linear in the size of G.

Second, we rewrite φ so that all occurrences of ˘are on the atomic labels. This
can be done in linear time by using the following equivalences:

˘(α|β) = (ᾰ|β̆)

˘(α;β) = (β̆; ᾰ)

˘(α∗) = (ᾰ)∗

Note that the resulting formula φ′ is linear in the size of φ. Finally, it is easy
to show that G |=PDLpath φ iff G′ |=PDL φ

′. �

5.2 The Satisfiability Checking Problem

The satisfiability problem for PDLpath on non-deterministic graphs can be proved
to be decidable by a reduction to the decidability of converse PDL with nomi-
nals.

Theorem 9 On non-deterministic graphs, the satisfiability problem for PDLpath

is decidable.

Proof. We use the fact that CPDL with nominals is decidable [12, Theorem
49] and reduce satisfiability in PDLpath to satisfiability in CPDL with nominals.

6



First consider an easy case: if the set of labels L is finite, # can be replaced
by the finite union of labels from L and the reduction to CPDL with nominals
is immediate.

Suppose that L is infinite, in which case # is a non-trivial addition to the
language. We proceed as follows. Given a PDLpath formula φ which uses labels
{l1, . . . , ln} and possibly #, we construct a CPDL formula φ′ by replacing #
with l1 + · · ·+ ln+1 in φ, and we show that φ is satisfiable iff root ∧ φ′ is.

Observe that if in a model M all edge labels are in the set {l1, . . . , lk}, then
tr(#) = tr(l1 + · · ·+ lk). Suppose M,u |= φ. Let M ′ be obtained from M by re-
placing all labels not in {l1, . . . , ln} by ln+1. It is easy to show that M ′, u |= φ.
By our observation M ′, u |= φ′. For the converse, assume that M,u |= φ′.
Let M ′ be obtained from M by deleting all edges labeled by modalities not in
{l1, . . . , ln+1}. It is easy to see that M ′, u |= φ′. In M ′, 〈#〉 is definable as
a union of {l1, . . . , ln+1}, hence on M ′, φ′ and φ are equivalent and we obtain
M ′, u |= φ. �

By itself Theorem 9 does not imply an analogous result for deterministic graphs
which remains an open problem to date. However, if the set of edge labels L is
finite, deterministic CPDL with nominals is decidable only if on deterministic
graphs, the satisfiability problem for PDLpath is decidable.

In the non-deterministic case, we can actually do better than Theorem 9, and
obtain matching lower and upper bounds for the complexity of the satisfiability
problem for PDLpath.

Theorem 10 On non-deterministic graphs, the satisfiability problem for PDLpath

is EXPTIME-complete whenever |L| ≥ 1.

Proof. To see that the satisfiability problem for PDLpath is decidable in expo-
nential time, recall that, by [12, page 98], CPDL with nominals is EXPTIME-
complete. The reduction of the PDLpath satisfiability problem to the satisfia-
bility problem for CPDL with nominals is polynomial in the size of the input
formula.

As to the lower bound, we reduce the global satisfiability problem for the
standard modal logic K (known to be EXPTIME-hard, see e.g. [10, 18]) into
PDLpath-satisfiability restricted to the modal connectives 〈a0〉 and 〈a−1

0 〉. To
do so, we take advantage of the spy-point technique [6] by adapting the proof
of [4, Theorem 2]. The only difficulty is now to use the spy-point technique and
simultaneously to encode the propositional variables.

Let us define a family (ϕi)i∈N of PDLpath-formulae encoding propositional
variables.

• ϕ1
def= 〈a−1

0 〉(〈a0〉root ∧ 〈a−1
0 〉root);

• ϕi+1
def= 〈a−1

0 〉(¬root ∧ ¬〈a−1
0 〉root ∧ ϕi).

Encoding of propositional variables can be also found in [16, 19] but there are of
different nature since we tailor our encoding to the spy-point technique. Con-

7



p2

p1

G G∗

rt 1 2

Figure 2: G and G*: an example

sider the mapping f from K-formulae into PDLpath-formulae:

f(pi) = ϕi for i ≥ 1
f commutes with the Boolean connectives

f(3φ) = 〈a0〉(〈a−1
0 〉root ∧ ¬〈a0〉root ∧ f(φ)).

We shall show that φ is globally K-satisfiable iff [a0](〈a−1
0 〉root ∧ ¬〈a0〉root ⇒

f(φ)) is PDLpath-satisfiable. Without any loss of generality, we can assume that
if N distinct propositional variables occur in φ, then they are p1, . . . , pN .
(→) Assume that G |= φ for some Kripke structure G = 〈V,R,m〉. Let G∗ =
〈V ∗, rt, Ra0〉 be the PDLpath-model such that

• V ∗ def= V ∪ {rt} ∪ {1, . . . , N} where rt is not in V ∪ {1, . . . , N} and V ∩
{1, . . . , N} = ∅ (N is the number of propositional variables in φ);

• Ra0

def= R∪ {〈rt, w〉 : w ∈ V } ∪ {〈1, 2〉, . . . , 〈N − 1, N〉} ∪ {〈1, rt〉, 〈rt, 1〉} ∪
{〈i, w〉 : G,w |= pi};
• the interpretation of root is rt.

The root rt is Ra0 -connected to the nodes in V ∪ {1}. The node 1 is distin-
guished from the nodes from V since it is the only node in Ra0(rt) ∩ R−1

a0
(rt).

In Figure 2, we give a basic example of the construction.
Let us show that for all w ∈ V , for all ψ ∈ sub(φ) (set of subformulae of φ),

G,w |= ψ iff G∗, w |= f(ψ).
In order to show the base case (for i ∈ {1, . . . , N}, G,w |= pi iff G∗, w |= ϕi),

one can easily show by induction on i that {w ∈ V ∗ : G∗, w |= ϕi} = {w ∈ V :
G,w |= pi} ∪ ({i+ 1} \ {N + 1}).

We treat in more details the case ψ = 3ψ′. G,w |= 3ψ′ iff there is w′ ∈ R(w)
such thatG,w′ |= ψ′ iff (i) there isw′ ∈ V such that 〈w,w′〉 ∈ Ra0 , 〈r, w′〉 ∈ Ra0 ,
〈w′, r〉 6∈ Ra0 and G,w′ |= ψ′. Furthermore, (i) iff there is w′ ∈ Ra0(w) such
that G∗, w′ |= f(ψ′)∧ 〈a−1

0 〉root∧¬〈a0〉root iff G∗, w |= f(ψ). So for all w ∈ V ,
G∗, w |= f(φ) since G |= φ. Moreover, Ra0(rt)∩{w ∈ V ∗ : G∗, w |= 〈a−1

0 〉root∧
¬〈a0〉root} = V . So, G∗, rt |= [a0](〈a−1

0 〉root ∧ ¬〈a0〉root⇒ f(φ)).

8



(←) Assume that G, rt |= [a0](〈a−1
0 〉root∧¬〈a0〉root⇒ f(φ)) for some PDLpath-

model G = 〈V, rt, Ra0〉. Let G∗ = 〈V ∗, R,m〉 be the Kripke structure such
that V ∗ def= {w ∈ V : 〈rt, w〉 ∈ Ra0 , 〈w, rt〉 6∈ Ra0}, R is the restriction of
Ra0 to V ∗ and for i ∈ {1, . . . , N}, m(pi)

def= {w ∈ V ∗ : G,w |= ϕi}. Let us
show that for w ∈ V ∗, for ψ ∈ sub(φ), G,w |= f(ψ) iff G∗, w |= ψ. The
base case is obvious. We treat in more details the case ψ = 3ψ′. G,w |=
〈a0〉(f(ψ′) ∧ 〈a−1

0 〉root ∧ ¬〈a0〉root) iff there is w′ ∈ Ra0(w) ∩ V ∗ such that
G,w′ |= f(ψ′) iff there is w′ ∈ R(w) such that G∗, w′ |= ψ′ iff G,w |= ψ. Since
G, rt |= [a0](〈a−1

0 〉root∧¬〈a0〉root⇒ f(φ)), for all w ∈ Ra0(rt)∩V ∗, G∗, w |= φ.
Since V ∗ ⊆ Ra0(rt), for all w ∈ V ∗, G∗, w |= φ.

�

As a corollary to the proof of Theorem 10, the minimal tense logic augmented
with a single nominal but without proposition letters also has an EXPTIME-
hard satisfiability problem.

5.3 The Implication Problem

Our next aim is to obtain sharp complexity results for implication problems
for constraints. We start by considering non-deterministic graphs, and the first
step is to show the following.

Theorem 11 On non-deterministic graphs, the implication problem for path
inclusion constraints is decidable in exponential time, while it is at least PSPACE-
hard whenever |L| ≥ 2.

Proof. The EXPTIME upper bound is from Theorem 10 and the fact that
the path inclusion p ⊆f q can simply be translated as [p]〈q̆〉root. As to the
lower bound PSPACE, each relational term t built with +, ; ,∗ over the atomic
terms a0, a1, . . . can be viewed in the obvious way as regular expressions and we
write L(t) to denote the language generated by t. By [20, Theorem 2.12(c)], the
problem of checking whether L((a0 + a1)∗) 6⊆ L(t) where t is a relational term
built over {a0, a1} is PSPACE-complete. The complement problem belongs to
the same complexity class. One can show that for any regular expression t, t′,
L(t) ⊆ L(t′) iff for any structure 〈V, r,Ra0 , Ra1〉, tr(t) ⊆ tr(t′). Consequently,
it is an easy task to check that for any relational term t built over {a0, a1},
L((a0 +a1)∗) ⊆ L(t) iff |= (a0 +a1)∗ ⊆f t. Hence, the implication problem re-
stricted to two labels and without inclusion constraints as premisses, is already
PSPACE-hard. �

For backward path constraints one can obtain results similar to those for
path inclusion constraints.

Theorem 12 On non-deterministic graphs, the implication problem for back-
ward constraints is decidable in exponential time, while it is at least PSPACE-
hard whenever |L| ≥ 2.

9



Proof. Since converse is not present in the path expressions, we cannot use
the proof of Theorem 11. However, one can show that for any relational term t
built over {a0, a1}, L((a0 + a1)∗) ⊆ L(t) iff for any structure G, G |= t ⊆b a2
implies G |= (a0 + a1)∗ ⊆b a2. �

We now restrict attention to deterministic graphs, which makes a substantial
difference. The results known so far (see [8]) are: all path constraints without
regular expressions (including lollipop path constraints) are decidable on deter-
ministic graphs. Lollipop path constraints that do contain regular expressions
are undecidable. Below we consider the case of constraints with regular expres-
sions.

By using the previous correspondences between path constraints and PDLpath

formulae, one can easily show the following result.

Lemma 13

1. On deterministic graphs, the implication problem for path inclusion con-
straints is reducible to the satisfiability problem for PDLpath on determin-
istic graphs.

2. On deterministic graphs, the implication problem for backward constraints
is reducible to the satisfiability problem for PDLpath without converse on
deterministic graphs.

As a consequence, since DPDL with nominals is known to be decidable in ex-
ponential time [15, 23], we get the following result.

Theorem 14 On deterministic graphs, the implication problem for backward
constraints for finite sets of labels L is decidable in exponential time.

The latter result provides a partial positive answer to the last open question
from [8]. However, it is open whether on deterministic graphs, the implication
problem (for path inclusion constraints) is decidable. Similarly, the decidability
of the implication problem for backward constraints (without restrictions on L)
is open.

On deterministic graphs, the implication problem with lollipop constraints
of the form r ; p ⊆f q is undecidable even if L contains only two labels [8].
However, in the lollipop constraints used in the proof the operator ∗ occurs in
r, and this is used to encode the word problem.

6 Conclusions

We have given new and transparent decidability proofs for the path inclusion
constraints proposed in [2] for optimizing queries on semistructured data, mostly
in the context of the web. We have obtained sharp upper and lower bounds that
are better than previously known ones (Theorems 11 and 12). Table 1 summa-
rizes the complexity and (un-) decidability results for the logics considered in
this paper.

10



Model checking problem
non-deterministic graphs deterministic graphs

PDL O(||G|| × |φ|) [11] O(||G|| × |φ|) [11]
PDLpath O(||G|| × |φ|); this this O(||G|| × |φ|); this

paper, Theorem 8 paper, Theorem 8

Satisfiability problem
non-deterministic graphs deterministic graphs

PDL EXPTIME-complete [14, 24] EXPTIME-complete [22, 5]
PDL with nominals EXPTIME-complete [15] EXPTIME-complete [15]
CPDL EXPTIME-complete [] EXPTIME-complete [27]
CPDL with nominals EXPTIME-complete [12, 4] open
PDLpath EXPTIME-complete; this open

paper, Theorem 10

Implication problem
non-deterministic graphs deterministic graphs

inclusion constraints PSPACE-hard, in EXPTIME; open
this paper, Theorem 11

backward constraints PSPACE-hard, in EXPTIME; in EXPTIME (with finite L);
this paper, Theorem 12 this paper, Theorem 14

lollipop constraints undecidable undecidable
[9, Theorem 3.1] [8, Theorem 6.1]

Table 1: A summary

Some of our decidability results were obtained by re-using the results of [12].
In fact, there are many areas in computer science in which describing and rea-
soning about finite graphs is a key issue. There exists a large body of work in
e.g., feature structures [25], process algebra [21], or knowledge representation
[13] which can be usefully applied in database theory. But there are differences
in the kind of questions asked and in the emphasis in descriptions of linguis-
tic structures, processes, or knowledge on the one hand, and in descriptions
of database schemas on the other hand, which makes the present application
interesting and non-trivial.

Our modal logic perspective on path constraints moves many decidability
and complexity issues for semistructured data into the realm of PDL-like logics.
Here are just some of the many interesting open problems:

1. Complexity of the implication problem (we know PSPACE-hardness and
the EXPTIME upper bound).

2. Decidability of the implication problem for forward constraints on deter-
ministic graphs.

11



3. Decidability of PDLpath on deterministic graphs; decidability of PDL with
converse and determinism is a long-standing open problem [26].

Acknowledgments. We are grateful to Peter Buneman, Neil Immerman,
Achim Jung, Brian Logan, Ulrike Sattler and Alan Sexton for useful comments.
This research was supported by the British Council/NWO UK-Dutch Joint Sci-
entific Research Programme under grant JRP548. Maarten de Rijke was also
supported by the Spinoza project ‘Logic in Action’ and by grants from the
Netherlands Organization for Scientific Research (NWO), under project num-
bers 612-13-001, 365-20-005, 612.069.006, 612.000.106, and 220-80-001.

References

[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web. Morgan
Kaufmann, 2000.

[2] S. Abiteboul and V. Vianu. Regular path queries with constraints. In
Proceedings PODS’97, pages 122–133, 1997.

[3] H. Andreka, I. Nemeti, and J. van Benthem. Modal languages and bounded
fragments of predicate logic. Journal of Philosophical Logic, 27(3):217–274,
1998.

[4] C. Areces, P. Blackburn, and M. Marx. A road-map on complexity for
hybrid logics. In J. Flum and M. Rodŕıguez-Artalejo, editors, Computer
Science Logic, pages 307–321. LNCS 1683, Springer, 1999.

[5] M. Ben-Ari, J. Halpern, and A. Pnueli. Deterministic propositional dy-
namic logic: finite models, complexity and completeness. Journal of Com-
puter and System Sciences, 25:402–417, 1982.

[6] P. Blackburn and J. Seligman. Hybrid languages. Journal of Logic, Lan-
guage and Information, 4:251–272, 1995.

[7] P. Buneman, S. Davidson, M. Fernandez, and D. Suciu. Adding structure
to unstructured data. In Proceedings ICDT’97, pages 336–350, 1997.

[8] P. Buneman, W. Fan, and S. Weinstein. Path constraints on deterministic
graphs. Technical Report Technical Report MS-CIS-98-33, LINCS, CIS,
UPenn, 1998.

[9] P. Buneman, W. Fan, and S. Weinstein. Path constraints on semistructured
and structured data. In Proceedings PODS’98, 1998.

[10] C. Chen and I. Lin. The complexity of propositional modal theories and the
complexity of consistency of propositional modal theories. In A. Nerode
and Yu. V. Matiyasevich, editors, LFCS-3, St. Petersburg, pages 69–80.
Springer-Verlag, LNCS 813, 1994.

12



[11] R. Cleaveland and B. Steffen. A linear-time model-checking algorithm for
the alternation-free modal mu-calculus. In K. Larsen and A. Skou, editors,
Computer-Aided Verification (CAV ’91), Aalborg, Denmark, pages 48–58.
LNCS 575, Springer-Verlag, 1991.

[12] G. De Giacomo. Decidability of Class-Based Knowledge Representation
Formalisms. PhD thesis, Universitá degli Studi di Roma “La Sapienza”,
1995.

[13] F.M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Reasoning in descrip-
tion logics. In G. Brewka, editor, Principles of Knowledge Representation,
Studies in Logic, Language and Information, pages 191–236. CSLI Publi-
cations, 1996.

[14] N.J. Fisher and R.E. Ladner. Propositional dynamic logic of regular pro-
grams. Journal of Computer and System Sciences, 18:194–211, 1979.

[15] G. Gargov and S. Passy. Determinism and looping in combinatory PDL.
Theoretical Computer Science, 61:259–277, 1988.

[16] J. Halpern. The effect of bounding the number of primitive propositions and
the depth of nesting on the complexity of modal logic. Artificial Intelligence,
75(2):361–372, 1995.

[17] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. The MIT Press, 2000.

[18] E. Hemaspaandra. The price of universality. Notre Dame Journal of Formal
Logic, 37(2):173–203, 1996.

[19] E. Hemaspaandra. The complexity of poor man’s logic. In H. Reichel and
S. Tison, editors, STACS’00. LNCS 1770, Springer Verlag, 2000.

[20] H. Hunt, D. Rosenkrantz, and Th. Szymanski. On the equivalence, con-
tainment, and covering problems for the regular and context-free languages.
Journal of Computer and System Sciences, 12:222–268, 1976.

[21] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[22] R. Parikh. Propositional logics of programs: systems, models and complex-
ity. In 7th Annual ACM Symp. on Principles of Programming Languages,
pages 186–192, 1980.

[23] S. Passy and T. Tinchev. An essay in combinatory dynamic logic. Infor-
mation and Computation, 93:263–332, 1991.

[24] V.P. Pratt. Models of program logics. In Proceedings 20th IEEE Symp.
Foundations of Computer Science, pages 115–222, 1979.

[25] W.C. Rounds. Feature logics. In J. van Benthem and A. ter Meulen,
editors, Handbook of Logic and Language, pages 475–534. Elsevier Science,
1997.

13



[26] U. Sattler and M. Vardi. The hybrid mu-calculus. In A. Leitsch, R. Goré,
and T. Nipkow, editors, Proceedings IJCAR 2001, pages 76–91. LNAI 2083,
Springer-Verlag, 2001.

[27] M. Vardi and P. Wolper. Automata-theoretic techniques for modal logics
of programs. Journal of Computer and System Sciences, 32:183–221, 1986.

14


